Automated design of photonic experiments for device-independent quantum key distribution

Xavier Valcarce¹, Pavel Sekatski², Elie Gouzien¹, Alexey Melnikov³, Nicolas Sangouard¹

All sector se

¹ Université Paris-Saclay, CEA, CNRS, Institut de Physique Théorique, 91191, Gif-sur-Yvette, France ² Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland ³ Terra Quantum AG, 9000 St Gallen, Switzerland

arXiv:2209.06468

From Classical to Quantum Cryptography

Reinforcement Learning

Quantum Optical Circuits

From Classical cryptography...

Alice

Symmetric cryptography:

Alice and Bob share the same key

X

Bob

used to en/de-crypt the message

From Classical cryptography...

Alice

Asymmetric cryptography:

Bob has a private key

and shares a public key

Practical, no need for a pre-shared keys of size

Cryptography proof relying on computational assumption Can be hacked using a quantum computer [Gouzien et. al., PRL 127 (14)]

... to Quantum Cryptography

Quantum key distribution:

Use quantum ressources to generate and distribute a symmetric key Key is provably secure (unkown to a third party, Eve)

QKD relies on a small set of assumptions:

 \checkmark The devices used to generate the key behave according to quantum theory Alice and Bob have access to random numbers Alice and Bob labs are isolated (no information leakage) \checkmark Classical information is performed on trusted computers X Their quantum devices are trusted and perfectly calibrated → Can be hacked (side channel attack) [F. Xu et al., Rev. Mod. Phys. 92]

Device-independent quantum key distribution

Device-independent:

No assumptions made on the quantum devices

DIQKD, principles:

Entanglement-based

Maximally entangled state

Measurement outcomes are Measurement outcomes are strongly unpredictible to any third party correlated

Bell tests are used as a security statement

$H(\bigcirc |B)=0$

At each round an entangled state 🜟 is distributed to Alice and Bob

At each round an entangled state ***** is distributed to Alice and Bob

Alice and Bob randomly chose a measurement setting $\boldsymbol{x}, \boldsymbol{y}$

They measure \bigstar using measurements \hat{A}_x, \hat{B}_y

Outcomes A_x, B_y are recorded

Two types of rounds:

Test round → Bell test

 $\hat{A}_0, \hat{A}_1, \hat{B}_0, \hat{B}_2$ are used to compute the CHSH score

$$S = \langle \hat{A}_0 \hat{B}_0 \rangle + \langle \hat{A}_0 \hat{B}_1 \rangle + \langle \hat{A}_1 \hat{B}_0 \rangle - \langle \hat{A}_1 \hat{B}_1 \rangle$$

Key generation round \longrightarrow \checkmark generated from A_0 Bob tries to guess \checkmark using B_2

Key rate: number of secure key bit that can be extracted per round

In the assymptotic limit of a large number of round

 $r = H(\mathbb{Q} \mid \mathbb{Q}) - H(\mathbb{Q} \mid B)$ \downarrow can be bounded using the CHSH score $\leq 1 - f(S)$

DIQKD Implementation

What's needed:

Generation of entangled states to obtain high CHSH score and correlated keys High frequency of state generation to obtain a sufficient number of round in a limited time

Practical / Commercial

- Photonic plateform seems promising Bell-CHSH game already implemented
- High state-generation rate
- Capacity to implement complex circuit
- X Low CHSH score
 - Susceptible to losses

A DIQKD Implementation: SPDC source

"Standard" implementation to realize Bell tests is using a SPDC source generating photons entangled in polarization

Quantum Optics: operations

Single-mode squeezer

Phase-shifter

Displacement (in p)

Displacement (in x)

Heralding

Photo-detection (NPNR)

Quantum Optics: simulation

Bosonic mode are characterized by ladder operators or, alternatively, with $\hat{x}_i = \frac{a_i^{\dagger} + a_i}{2}$ and $\hat{p}_i = i \frac{a_i^{\dagger} - a_i}{2}$ For a n-mode system, we have $\mathbf{q} = (\hat{x}_1, \hat{p}_1, \dots, \hat{x}_n, \hat{x}$ Gaussian state can be represented using $2n^2+3$ real parameters: 2n displacement vector μ $\mu_i = \langle q_i \rangle$

Gaussian operations acts following $T:(\mu,\Sigma) \to (T)$

Heralding operation are non-Gaussian but the resulting (conditionned) state is a sum of Gaussian state

$$a_i, a_i^\dagger a_i$$

$$(\hat{p}_n)$$

2nx2n covariance matrix $\Sigma_{ij} = \frac{1}{2} \langle q_i q_j + q_j q_i \rangle$

$$M\mu + \vec{d}, M\Sigma M^T)$$

QuantumOpticalCircuits.jl

Julia pkg to simulate Gaussian optics, heradling, and photondetection

Available on github.com/xvalcarce/QuantumOpticalCircuits.jl

julia> using QuantumOpticalCircuits

julia> state = PseudoGaussianState(3);

julia> state = state |> TMS(0.01)(2,3) |> Heralding(3) |> BS(π/4)(1,2);

julia> p_click_1 = state |> PhotonDetector(1, n=0.8) 0.4000239998415148

julia> p_click_2 = state |> PhotonDetector(2, n=0.8) 0.4000239998415148

Reinforcement Learning

Reinforcement Learning aims at learning a task (game) by trial-and-erros

Environment

Environment: n-mode Optical Circuits

Stop: Maximum # gate reached || r = 1

State: Gaussian state, i.e. Σ, μ

RL for photonic DIQKD, found circuits

Maximize r in a ideal scenario

Maximize loss such that r > 10

Â, $y \in \{0, 1, 2\}$ Dp В

Takeaways

We used Reinforcement Learning to design quantum optical circuit allowing to implement device-independent quantum key distribution

Thanks for your attention

