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Abstract

We generalize the time-bin encoding implementation of the semi-device-indenpendent quantum ran-
dom number generator (QRNG) of (Brask et al.)[1], from two states to n states. In ordrer to use a
prepare-and-measure protocol, n nonorthognal states can be prepared, with a constant overlap between
each pair, encoded by weak coherent pulses and emitted by n-packet of time bins. States are then mea-
sure using unambiguous quantum states discriminator (USD). Relation between the number of time-bin
and the min-entropy according to detector efficiency, and mean photon number will be detailed, and
some implications will be discussed.

1 Introduction

Random number are a fundamental part of science and technology, as for Monte Carlo simulation, key gen-
eration for cryptography, satistical sampling, and other. A good random number generator is one with an
high output frequency and a high entropy[2]. Furthemore, for security applications, randomness must be
certified relative to any untrusted parties[3].

This work is based on the (Brask et al.)[1] QRNG wich tries to answer those random number needs. A
simple scheme of this QRNG can be found in Fig. 1. In the preparation part, this protocol takes a binary
input and emits a quantum system in a state corresponding to that binary value. Here, we increase the
number of inputs possibility from x ∈ {0, 1} to x ∈ {0, ..., n}. Our main goal was to test the n-inputs
hypothesis to kow if and how it can improve the (Brask et al.) QRNG protocol.

2 n-states generalisation

The first part of our work was to design a way to create a prepare device that takes n possibilities and
generate n-states with a constant overlap between each pair or |〈ψi|ψj〉| = δ ∀i 6= j. This will allow to have
some inconclusive output when measuring with USD[4].
Using the time-bin encoding this can be achieved by sending n-packets of time bin composed of n−1 vaccum
states, |0〉, and one coherent state, |α〉, with mean photon number |α|2 (see Appendix A). The position in
time of the coherent state is the value of the input taken by the prepare device.

|ψ0〉 = |α〉 |0〉 ... |0〉 , |ψ1〉 = |0〉 |α〉 ... |0〉 , |ψn〉 = |0〉 |0〉 ... |α〉 (1)

Between each pair the overlap will be

δ = |〈ψi|ψj〉| = exp (−|α|2) (2)
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Figure 1: Steps of Brask et al. QRNG protocol. (1) Data is generated in a prepare-and-measure setup. The
prepared states are known to have a certain minimal overlap, hence the preparation device is a ’gray box’,
while nothing is assumed about the measurement device, which is a ’black box’. (2) From the collected
data, a conditional probability distribution for outputs given inputs is estimated, and from this, a bound on
the entropy in the output data is evaluated. (3) Based on the entropy bound, a string of certified perfectly
random bits are extracted from the output data.

Using this, we kept the advantage of realising the (optimal) USD measurement since the experimental setup
would still simply require a single-photon detector with a timing resolution not bigger than for a distinction
between two time bins. Depending on when the coherent state is detected this will set the outputs value b
within {0, 1, ..., n}. If no click is detected the output is inconclusive b = ∅. Because the overlap between
each pair of states is constant we still have p(b = ∅) = exp(−|α|2) in the absence of loss and noise.

In practice we may have some imperfections on the USD measurement due to imperfections in the
experimental setup. Given probabilites p(b|x) containing noise (i.e. p(∅|x) = δ, p(b 6= ∅|x = b) = 1− δ−n ∗
ε, p(b 6= ∅|x 6= b& x 6= ∅) = ε ), and the overlap δ, one can bound the probability pg of guessing the output
of the prepare-and-measure device with a complete knowledge of all the system, such as the input state,
every measurement details and so on. As for the (Brask et al) QRNG, the guessing propabilty is averaged
over every inputs and measurement startegies, occuring with p(x) and p(λ), with λ a measurement strategy,
respectively, we have

pg =
∑
x

p(x)
∑
λ

p(λ) max{Tr[ρxΠλ
ø ], 1− Tr[ρxΠλ

ø ]} (3)

where ρx = |ψx〉 〈ψx| and Πλ
ø are the elements of a (n+ 1)-outcome positive-operator-value measure POVM

describing the measurement. Upper bounding pg certifies randomness. One can use semi definite program-
ming (SDP), as (Brask et al.) did but generalized to n-states (Annexe B). A good and practical bound of
pg is obtain by

pg 6 p∗g =
∑
b,x

νbxp(b|x) (4)

For any νbx wich fulfill that there exists 2n n x n Hermitian matrices Hλ0,λ1,...,λn , with λ0, λ1, ..., λn = 0, 1,
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such that ∑
x

ρx(
1

2
δλx,0δb,∅ +

1

2
δλx,1(1− δb,∅)− νbx)

+Hλ0,λ1,...,λn − 1

n
Tr[Hλ0,λ1,...,λn ]1 6 0. (5)

Coefficients νbx that are optimal for particular data p(b|x) are found via SDP (Annexe B). Thanks to the
bound on pg, one can extract the min-entropy1

Hmin = − log 2(pg) (6)

wich quantifies the number of certified random bit that can be extracted per bit of raw data[5].

3 Results and Implications

Bounding the guessing probabilty pg for different number of inputs, mean number photon and efficiency
allow one to derivate some new statements.
The more one increase the number of input taken by our QRNG, the more the min-entropy Hmin increase
as one can see in Fig. 2. This difference is significant around the mean number photon value wich gives the
maximum of the min-entropy. However one might neglect this difference when sufficiently far away from that
maximum (where min-entropy takes approximately the same value independently of the number of input).
The gap of min-entropy between n and (n+ 1) inputs decrease exponentially as n increase.
The maximum min-entropy value is reach arround the same value of mean number photon. One can notice
that the more inputs they are, the more the min-entropy peak-shape function is sharper. Since in an
experimental setup a laser used in the prepare device send a number of photon around a certain value,
increasing the number of inputs will, at a certain point, lack of usefulness, especially with low cost laser. I.e.
between 4 and 5 inputs the only gain in min-entropy are for a range of mean photon number of around .3
(with an efficiency η = .77), wich is too thin for being useful.

The final random bit string is generated depending on the conclusiveness of the measurement. Final bits
are a simple function of the measurement b which goes as follow

c(b) = δ∅,b b = ∅, 0, 1, ..., n (7)

So increasing the number of inputs should not affect the min-entropy of the system. However, because the
min-entropy seems to increase with the number of inputs, one can sates that the more inputs they are, the
more robust to loss and noise the system is.

We also derive the evolution of maximum value min-entropy can take for different efficiency value as in
Fig. 3. Increasing the number of inputs leads this function to fit a linear function with a slope a < 1. One
can deduce that increasing the number of inputs for highering the maximum min-entropy become mostly
significant for high measurement efficiency.

An other implication of a n-states inputs QRNG is on the output fequency. The more one increase n the
more time measurement takes, since for every states added the detector as to wait for a time-bin more.

4 Conclusion

Our n-states generalisation increase the robustness of the (Brask et al.) QRNG against noise and loss. We
have also explicit some limits of this imporvement, such as output frequency, and limits in experimental
number of input. Implementing a n-states system is interesting for a QRNG that use time-bin encoding
since it allows one to use a less efficient (so cheaper) detector, while still having a good useable entropy.

1Our implementation of the dual formulation of the SDP giving p∗g and extraction of min-entropy can be found on gitlab :
https://gitlab.com/plut0n/SDP-QRNG
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(a) (b)

Figure 2: Evolution of Hmin as a function of mean number of photon |α2| between 0 and 3, for 2 to 5
inputs. Noise and loss are taken into account into probabilities p(b|x).2a Detector efficiency is η = .20, this
correspond to a low-cost experimental setup. 2b Detector effiency is set to η = .70.

Figure 3: Evolution of the the maximum value of min-entropy Hmin, taken for |α|2 between 0 and 2.5, as a
function of efficiency η between 0 and 1
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Appendices

A Creating n-states with constant overlap

In this Appendix, I show how one can create n-states with the same constant overlap between each pair.
One can create the two first states in some basis {|0〉 , |1〉} as follow :

|ψ0〉 = |0〉 , |ψ1〉 = δ |0〉+
√

(1− δ2) |1〉 (8)

Then, one can generate n − 2 other states adding extra orthogonal basis, in order to have our n states, as
follow :

|ψi〉 = |ψi−2〉+ x |i− 1〉+ y |i〉 ∀i > 2 (9)

Where x comes from the constant overlap condition, and y comes from the normalisation condition,

x =

δ −
i−2∑
j=0

〈j|ψi−2〉

〈i− 1|ψi−1〉
(10)

y =

√√√√1−
i−1∑
j=0

(〈j|ψi−1〉)2 (11)

One can note that we should have a phase every time a basis appear more than once, exept for the |0〉 basis
where one can absorb the phase into the basis. However creating states with this method, and thanks to the
constant overlapping condition, set all phases to 0. The demonstration goes as follow

|ψj〉 = δ |0〉+ ...+ exp(iφ)x |j − 1〉+ y |j〉 ∀j > 2 (12)

With the overlapping condition already respected when constructing state, and taking into account the phase
we have

|〈ψj |ψj−1〉| = δ exp(iφ) = δ ∀j > 2 (13)

⇔ φ = 0 (14)

B Bounding pg by semidefinite programming

In this appendix, we bound the guessing probability using SDP. Let’s simply generalise to a n-states system
the primal formulation of the (Brask et al.) SDP, and then derive the dual formulation.
Using the (Brask et al.) method, one can bound the guessing propability, knowing the constant overlap
between each pair of states δ and some data p(b|x). As in [1] we will assume that all inputs are balanced,
p(x) = 1/n, and we will denote qλ = p(λ) distribution of measurement strategies, and ρx = |ψx〉 〈ψx| density
matrices. With a n-states generalisation, we are now working in a n-dimensional Hilbert space, with n-
states generating as in (Appendix A) in some basis {|0〉 , |1〉 , ..., |n〉}. Furthemore we no longer have two
measurement strategies but n of them ; they are labeled λx where x determine wich term is maximal for the
input x. For the following we keep the same notation as in [1].
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This leads to the primal formulation of the SDP generalised to n-states,

p̄g =
1

n
max

M
λ0,...,λn
b

n∑
x=0

1∑
λ0,...,λn=0

Tr
[
ρxM̃

λ0,...,λn
λx

]
, (15)

such that,

Mλ0,...,λn
b =

(
Mλ0,...,λn
b

)†
(16)

Mλ0,...,λn
b > 0, (17)∑

b

Mλ0,...,λn
b =

1

n
Tr

[∑
b

Mλ0,...,λn
b

]
1, (18)

∑
λ0,...,λn

Tr
[
ρxM

λ0,...,λn
b

]
= p(b|x). (19)

Using the Lagragian method to find the dual formulation of this SDP, one can obtain,

p∗g = min
Hλ0,...,λn ,νbx

−
∑
bx

νbxp(b|x) (20)

such that,

Hλ0,...,λn = (Hλ0,...,λn)†, (21)∑
x

ρx(
1

n
δλx,0δb,ø +

1

n
δλx,1(1− δb,ø) + νbx)

+Hλ0,...,λn − 1

n
Tr[Hλ0,...,λn ]1 6 0. (22)

This dual formulation of the SDP conserve propreties (Brask et al.) derived.
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