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Abstract

Nonlocality, one of the most intriguing aspects of quantum theory, is the
key resource in many of quantum mechanics’ advantages for information
processing tasks. Therefore, developing protocols to efficiently certify the
nonlocal nature of some observed multipartite correlations has become a
crucial endeavour in quantum information theory. In most of the studied
nonlocality scenarios, deciding whether a set of correlations is nonlocal or
not amounts to solving a linear program, for which efficient algorithms exist.
However, the size of those linear programs is exponential in the number of
particles in the many-body system under study, becoming infeasible even
for small sized systems.

In this thesis, we combine state-of-the-art machine learning algorithms
and recent advancements in the theoretical study of locality in multipartite
systems to develop an efficient and highly accurate protocol for certifying
quantum nonlocality. Our learning algorithms are trained with sample cor-
relations from small sized systems and then tested with correlations from
systems with increasing number of parties (where running the linear program
becomes infeasible). Through the use of domain adaptation techniques, we
are able to achieve instantaneous detection of nonlocal correlations with
more than 60% accuracy and almost independently of the number of par-
ties.
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Chapter 1

Introduction

One of quantum theory’s features which have puzzled scientists the most
since its origin is nonlocality, the fact that measuring a property of a quan-
tum system can instantaneously determine the results of another property
measured on a distant system. Such kind of nonlocal influence was part of
an important debate inside the scientific community. In their article of 1935
entitled “Can quantum-mechanical description of physical reality be consid-
ered complete?”, Einstein, Podolsky and Rosen [1] argued that any theory
making the same predictions as quantum theory and, at the same time,
avoiding such spooky action at a distance, as they called these non-local
influences, has to postulate the existence of “real properties” (or, hidden
variables) which, when taken into account, allow for the complete local de-
termination of the observations’ outcomes. Since orthodox quantum theory
does not include these, from the assumption of the impossibility of non-
local causation one has to conclude its incompleteness. Decades later, in
1964, John S. Bell proved that the predictions of quantum mechanics can
never be explained by a physical theory of local hidden variables, under the
assumption of free will, going against EPR’s intuition [2].

Besides producing a fundamental change in our perception of the uni-
verse, the study of Bell nonlocality [3] has led to new technological appli-
cations, and now we know that nonlocal correlations are the key resource
in most of quantum mechanics’ advantages for informational and computa-
tional tasks; key distribution protocols [4], algorithms for distributed com-
putation [5], or random number generators [6, 7] are exemples of such appli-
cations [8]. Certifying the nonlocality of the statistics of measurements over
multipartite quantum systems has therefore become a key problem in quan-
tum information theory. This certification can be done numerically using
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convex optimization algorithms to solve a membership problem. However,
given that the dimension of the space of correlations grows exponentially
with the number of quantum systems, characterizing (non)local correlations
of a multipartite system is, in general, of time complexity exponential in the
number of parties [9, 10].

Machine learning [11], the core of artificial intelligence, is a fast-expanding
interedisceplinary field. Recently, it has been used in nearly all fields of sci-
ence, including quantum many-body systems [12, 13, 14]. In a nutshell, the
the goal here is to develop efficient (albeit not perfectly accurate) schemes for
different classification tasks by training learning algorithms on large datasets
(possibly with the aid of, albeit inefficient, perfect classification algorithms)
aiming at making the error in generalizing the classification to unseen data
as small as possible.

In this thesis, we set out to develop an efficient and highly accurate
scheme to detect nonlocality in many-body systems. In the spirit of Ma-
chine Learning, our goal is to train a learning algorithm on correlations
from systems with a small number of parties with the aim that the classifi-
cation scheme generalizes well to a larger number of parties. This already
posses a technical problem, as it implies that the dimensions of the space
of training and testing points differ. We deal with this by working in the
space of symmetrized correlators, introduced by Tura et al. in [15], whose
dimension is independent of the number of parties N of the multipartite sys-
tem under study. Although looking only at symmetrized correlators implies
loosing information, this restricted space is already sufficient for certyfying
nonlocality in many experimentally relevant settings, e.g. for ground states
of the two-body Lipkin-Meshkov-Glick Hamiltonian [15]. However allowing
us to work in a constant dimensional space, the shape of the set of local
correlations within this space will still vary with N and, to cope with this
second issue, we will use a recently-developed ML scheme called Domain
Adversarial Neural Network [16] whose aim is to generate classifiers which
“ignore” certain features of the test data (in our setting, the number of
parties N).

This thesis is organized as follows. In Chapter 2 we give an introduction
to Bell nonlocality and to the setting of symmetrized correlators introduced
in [15]. Next, in Chapter 3, we describe the Machine Learning algorithms
we used, explain how we generated the training and test data and report
the results of the classification scheme developed. Finally, in Chapter 4 we
present our conclusions and discuss future research directions.
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Chapter 2

Preliminaries – Locality and
Convex Geometry

In this chapter, the concept of locality is introduced and some specific as-
pects are detailed. First, nonlocality is defined with the use of a Bell game.
Then, it is shown how one can represent and analyse locality using convex
geometry. These two topics are also discussed in the context of multipar-
tite systems. Finally, a recent improvement in the study of nonlocality in
multipartite systems, through the use of symmetric n-body correlators, is
reviewed.

2.1 Characterizing Locality via a Bell Game

Local correlations – A typical Bell game consists of two players (or, par-
ties), Alice and Bob, who may have been in contact in the past, and are
now spatially separated and without the ability to communicate with each
other1. Each player has a physical system on which he/she can perform, in
each round of the game, one of a finite number of measurements (or, inputs)
each of them having a finite number of results (or, outputs). We label Alice’s
(resp. Bob’s) input as x (resp. y) and the corresponding output as a (resp.
b). The object of interest is p(ab|xy): the probability that when performing
measurements x and y the players get outcomes a and b (see Fig. 2.1). We
will arrange these probabilities in a vector P := {p(ab|xy)} ∈ RdAdBmAmB ,
where mA (resp. mB) is the number of measurement Alice (resp. Bob) can
perform, and dA (resp. dB) corresponds to the number of outcomes of those

1Ideally separated by a space-like interval, this to ensure the non-signaling constraint
(cf. 2.1 non-signaling correlation)
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measurements (considering that all measurements have the same number
of possible outcomes) 2 . Using standard terminology, we will refer to P
interchangeably as a box or as correlations.

When a Bell game is played, it will in general be found that

p(ab|xy) 6= p(a|x)p(b|y)

implying that the distant players’ outcomes are not statistically independent
from each other. Since Alice and Bob may have been in contact in the
past, one can expect to find a set of past factors, which can be represented
by some shared random variable λ, accounting for such distant statistical
dependencies. A local explanation (or, model) for the observed probabilities
p(ab|xy) consists of the identification of a set of hidden variables which, when
taken into account, allow for statistical dependencies between the players
outputs (if any) to decouple. In general, the value of such hidden variable
will not be constant across different rounds of the game, so we let it vary
according to some probability distribution q(λ). We will say that a box P
is local if it can be written as follows [2]:

p(ab|xy) =

∫
λ

dλq(λ)p(a|x, λ)p(b|y, λ) ∀a, b, x, y. (2.2)

Notice that in this picture, we are assuming the freedom of choice which
states that Alice and Bob are free to choose measurements x and y - thus,
λ can not affect and is not affected by system measurements choices.

Quantum correlations – Let’s study the case in which Alice and Bob
each has a part of a bipartite quantum system which was prepared when
they were in contact. This can be two qudit, one held by each party, whose
joint state we describe, in general, with a mixed state ρAB, represented in
the quantum formalism by a density matrix operator acting on the tensor
product Hilbert space HA⊗HB, where HA (HB) is the Hilbert space where
Alice’s (Bob’s) qudit is lying.
We will say that a box P is quantum if the probabilities are given by Born’s
rule, i.e. if

p(ab|xy) = Tr(ρABM
a
x ⊗M b

y) ∀a, b, x, y (2.3)

2In a classic Bell game (or CHSH scenario), Alice and Bob have two inputs and two
outcomes a, b, x, y ∈ {0, 1}, P is so expressed as the set of the 16 possible combinations of
a, b, x, y conditional probabilities:

P = (p(00|00), p(01|00), . . . , p(11|11)). (2.1)
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Figure 2.1: A schematic representation of a Bell game with two party, Alice
and Bob. Alice (Bob) receive an input x (y) and performs the corresponding
measurement on her states. The outcome is labelled a (b).

where {Ma
x} (resp. {M b

y}), are POVMs (Positive-Operator Valued Mea-
surements)3 on HA (resp. HB) characterizing Alice’s (resp. Bob’s) mea-
surements. For some specific quantum states4 and measurements5, one can
obtain a quantum box P that doesn’t admit a decomposition of the form
(2.2) and thus can never be described by a local hidden variable model.
Hereafter, the term nonlocality will be used to refer to such correlations.

Non-signaling correlations – If one wants to explain correlations with
a minimal set of assumptions, one can study non-signaling correlations [17].
These correlations are generated when the only constraint is : a party’s local
experiment do not depend on other party’s local experiment. In other words,
this states that the local marginal probabilities of one party are independent
of the other party’s measurement setting. More formally, a non-signaling box
P is one for which

db∑
b=1

p(ab|xy) =

db∑
b=1

p(ab|xy′) = p(a|x), ∀a, x, y, y′

da∑
a=1

p(ab|xy) =

da∑
a=1

p(ab|x′y) = p(b|y), ∀b, y, x, x′
(2.4)

3POVM are define as a decomposition of a k-dimensional Haar unitary matrix set into
a set of d positive semidefinite operators, {Ma

x}da=1, where d in the number of outcome,
and such that Ma

x ≥ 0 ∀a ∈ {1, . . . , d}, and
∑d

a=1 M
a
x = 1k

4With separable quantum states, correlations obtained by (Eq. 2.3) are always local.
In order to have nonlocality, entangled states are necessary but not sufficient.

5If one of the measurement performed locally is jointly measurable, correlations gener-
ated are all local.
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Local correlations trivially satisfy the above constraints. This is also the
case for quantum correlations, because∑

b

p(ab|xy) = Tr(ρABM
a
x ⊗ (

∑
b

M b
y))

= Tr(ρABM
a
x ⊗ 1)

= Tr(ρAM
a
x )

= p(a|x)

(2.5)

and similarly for p(b|y).

2.2 Local Polytope

The local polytope – The set of local distributions – admitting a decom-
position of the form (2.2) – is the so-called local set, denoted by L. We
consider the two-partite (or bipartite) Bell game described above. A deter-
ministic local box is characterized by a strategy in which any given party
(Alice or Bob) for any given input always gives the same outcome. Formally:

PD = {pD(ab|xy)} = {D(a|x)D(b|y)} (2.6)

with D(a|x) ∈ {0, 1}, a deterministic probability distribution (same for
D(b|y)). We will denote the set of deterministic local boxes with Ldet. It
is not hard to see that any local box P can always be expressed as convex
combinations of deterministic ones

P =
∑

PD∈Ldet

cPD
PD, with cPD

≥ 0,
∑

PD∈Ldet

cPD
= 1. (2.7)

Geometrically speaking, this implies that the set L forms a polytope – a
convex set with a finite number of extremal points (or, vertices). One can
notice, in the case where Alice and Bob share the same number of measure-
ments m and outputs d, that the number of vertices of the corresponding
local polytope L is d2m [18].
Using the Minkowski-Weyl’s theorem, we can also see the local polytope as
the intersection of finitely many half-spaces [19],

L = {P | bi ·P ≥ bi0, ∀i ∈ I} (2.8)

with bi ∈ RdAdBmAmB , bi ·P :=
∑

a,b,x,y b
i(a, b, x, y)p(ab|xy) and {bi ·P ≥

bi0, i ∈ I} a finite set of inequalities. Those inequalities (or half-spaces)
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are the so-called Bell inequalities [2]. One can deduce that if a correlation
is nonlocal, it has to violate some Bell inequality, and thus, be outside the
local polytope.

Convex optimisation – The polytope representation of the local set is
useful in that provides an algorithm for determining whether a given box is
local. This is often refered to as the polytope membership problem : given a
set of vertices defining a polytope, and given a query point lying in the same
space, find whether this point belongs to the polytope. A reformulation of
this membership problem, applied to our case, is to determine whether, for
a given box P, there exist coefficients ci satisfying (Eq. 2.7). This reformu-
lation is a typical instance of a linear programming (LP) problem [20] – the
problem of minimizing or maximizing a linear function over a polyhedron.
Specifically, for the problem of deciding the nonlocality of a box Q we have
the optimization problem:

min
{cP}

1

s.t.
∑

PD∈Ldet

cPD
PD = Q,

∑
PD∈Ldet

cPD
= 1

cPD
≥ 0, ∀PD ∈ Ldet.

(2.9)

2.3 Locality in Multipartite System

Correlations – Let’s describe a multipartite Bell game. In this setting,
we have N parties, each having a system with inputs xi ∈ X and outputs
ai ∈ A ∀i ∈ {1, . . . , N}. Generalizing the definition of locality (Eq. 2.2) to
N parties is straightforward. The local probability distribution representing
a local hidden variable model in a multipartite system goes as follow:

p(a|x) =

∫
λ

dλq(λ)

N∏
i=1

p(ai|xi, λ) (2.10)

where a ∈ AN (resp. x ∈ XN ) are vectors containing the outputs (resp.
inputs) of the N parties. Thereby, a local box in a multipartite system is a
box that admits a decomposition of the form in (Eq. 2.10).

In the same way, one can also generalize the notion of non-signaling to
a multipartite system. We need to add here that the non-signaling con-
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straint should be respected by all bipartitions of the N parties. Denoting
by (b, b) ∈ B an arbitrary bipartition of the N -parties, multipartite non-
signaling constraints state that∑

ab̄

p(ab,ab̄|xb,xb̄) =
∑
ab̄

p(ab,ab̄|xb,x′b̄) = p(ab|xb), (2.11)

with ab,xb the inputs and outputs of the bipartition b (equivalently for b̄).

Generalizing the notion of nonlocality to multipartite system is not triv-
ial. One can use the same method we used previously and state that multi-
partite nonlocality correspond to boxes that do not admit a decomposition
of the type (Eq. 2.10). However, this is a weak definition of nonlocality
because, as noticed by Svetlichny [21] in the tripartite case and generalized
to N -partites in [22], one can find a bi-separation of (Eq. 2.10); conserving
the notation of (Eq. 2.11), such a separation can be written in the form
bellow [23],

p(a|x) =
∑

(b,b̄)∈B

pb

∫
λ

dλqb(λ)p(ab|xb)p(ab̄|xb̄). (2.12)

Thus, a stronger definition of multipartite nonlocality considers boxes which
do not admit a decomposition of the form in (Eq. 2.12), or that are
not bi-separable. This is referred to as genuine multipartite nonlocality
(GMNL) [24].

Multipartite local polytope – As in the bipartite case (see 2.2), one
can define the multipartite local set using multipartite deterministic local
strategies (Eq. 2.13)

PD = {pD(a|x)} = {D(a1|x1)D(a2|x2) . . . D(an|xn)}. (2.13)

Indeed, a multipartite local box, in the sense presented above in (Eq.
2.10), can be described as a convex combination of deterministic boxes.
The local set can thus be written as,

L = {P | P =
∑
i

ciP
(i)
D , ∀ci ≥ 0, s.t.

∑
i

ci = 1}. (2.14)

(Eq. 2.14) still describes a polytope. The mindful reader may notice
that the number of vertices characterizing this multipartite local polytope
grows exponentially with the number of parties (dNm). Therefore, even

Chapter 2 10
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the most efficient algorithms known to date for the polytope membership
problem, whose time complexity is polynomial in the number of vertices (see
e.g. [25]), will have a running time exponential in N on this polytopes. In
addition, notice that, already for the simple scenario of two parties with m
dichotomic measurements, deciding locality is an NP-complete problem [26].

2.4 Symmetrized Local Polytope

2.4.1 Symmetrized Space

Recently, it has been shown that bi-separable nonlocality can be detected
in many body-systems using correlators only up to the second order [15].
More specifically, the method introduced in [15] provides Bell inequalities
involving only single-body and two-body correlators to detect nonlocality in
the multipartite setting.
The setup is the same as explained in Section 2.3 : N parties, with inputs
x := (x(1), · · · , x(N)) ∈ XN , and outputs a := (a(1), · · · , a(N)) ∈ AN . We
define the symmetrized single-body correlators (or local expectation values),

Sx :=
N∑
i=1

〈A(i)
x 〉, ∀x ∈ {1, . . . ,m} (2.15)

with
〈A(i)

x 〉 :=
∑

a∈AN

a(i) · p(a|x1, . . . , x, . . . , xN ),

and where we assume nonsignaling constraints (so the ith party’s marginal
distribution for input x is independent of the choice of inputs for the other
parties). Similarly, we have the symmetrized two-body correlators:

Sxy :=

N∑
i,j=1
i 6=j

〈A(i)
x A

(j)
y 〉, ∀x, y ∈ {1, . . . ,m}. (2.16)

with

〈A(i)
x A

(j)
y 〉 :=

∑
a∈AN

a(i)a(j) · p(a|x1, . . . , xi, . . . , xj , . . . , xN ).

We can now consider a symmetrized space, determined by five-dimensional
vectors

(S0, S1, S00, S01, S11). (2.17)

Chapter 2 11
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As one can notice, the number of parties is absorbed in the definition of body
correlators ; we are now dealing with a space whose dimension is independent
of N .

2.4.2 Symmetrized Polytope

Deterministic correlators – One can compute single-body and two-body
correlators for every deterministic strategy. Here we present the method
of [15], for a two-input, {0, 1}, two-output, {−1, 1}, and N -partite setting.
First we define the number of parties playing each of the four deterministic
strategy,

a := #{i ∈ {1, . . . , N} | a(i)
0 = 1, a

(i)
1 = 1}

b := #{i ∈ {1, . . . , N} | a(i)
0 = 1, a

(i)
1 = −1}

c := #{i ∈ {1, . . . , N} | a(i)
0 = −1, a

(i)
1 = 1}

d := #{i ∈ {1, . . . , N} | a(i)
0 = −1, a

(i)
1 = −1}.

(2.18)

With the trivial condition a+b+c+d = N . One can then rewrite correlators,

S0 = a+ b− c− d
S1 = a− b+ c− d
S00 = S2

0 −N
S01 = S0S1 − (a− b− c+ d)

S11 = S2
1 −N

(2.19)

Thus, single-body and two-body correlators for deterministic strategies can
be parametrized by elements in the set {(a, b, c, d) ∈ N4 | a+ b+ c+ d = N}
which is isomorphic to a 3-tetrahedron,

TN = {(a, b, c) ∈ N3 | a+ b+ c ≤ N}. (2.20)

Tura et al. [15] proved that the deterministic symmetrized polytope we want
to describe is only represented by 4-tuples that belong to the boundary of
the above tetrahedron, ∂TN . This is,

∂TN = {(a, b, c, d) ∈ N4 | a+ b+ c+ d = N, abcd = 0} (2.21)

We generalized this method to an arbitrary number of inputs m. The
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quantities of (Eq. 2.18) can be written as,

α1 = #{i ∈ {1, . . . , N} | a(i)
1 = 1, a

(i)
2 = 1, . . . , a

(i)
m−1 = 1, a(i)

m = 1}

α2 = #{i ∈ {1, . . . , N} | a(i)
1 = 1, a

(i)
2 = 1, . . . , a

(i)
m−1 = 1, a(i)

m = −1}

α3 = #{i ∈ {1, . . . , N} | a(i)
1 = 1, a

(i)
2 = 1, . . . , a

(i)
m−1 = −1, a(i)

m = 1}

α4 = #{i ∈ {1, . . . , N} | a(i)
1 = 1, a

(i)
2 = 1, . . . , a

(i)
m−1 = −1, a(i)

m = −1}
...

α2m = #{i ∈ {1, . . . , N} | a(i)
1 = −1, a

(i)
2 = −1, . . . , a

(i)
m−1 = −1, a(i)

m = −1}
(2.22)

Where αn correspond to the number of parties with a deterministic strategy
which output a string (a1, . . . , am) equivalent to the binary expression of the
number n − 1, in which 1 replace 0 and −1 replace 1. Also, the condition∑2m

i=1 αi = N holds. We can rewrite the above expression in a matrix form:

A =



α1 1 1 . . . 1 1
α2 1 1 . . . 1 −1
α3 1 1 . . . −1 1
α4 1 1 . . . −1 −1
...

...
...

. . .
...

...
α2m−1 −1 −1 . . . −1 1
α2m −1 −1 . . . −1 −1


(2.23)

Hence, single body correlator for an input k ∈ {1, . . . ,m} is of the form,

Sk =

2m∑
i=1

Ai,0Ai,k (2.24)

where Ai,j is the element on the ith line, and on the jth column, of matrix
A define in (Eq. 2.23). And two body correlators are,

Skl = SkSl −
2m∑
i=1

Ai,0Ai,kAi,l (2.25)

As with Tura et al.’s method, in order to find every deterministic body
correlators, we just need to find all 2m-tuple in the set,

S = {α ∈ N2m |
2m∑
i=1

αi = N, ∃αi = 0 ∀i ∈ {1, . . . , 2m}}. (2.26)
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Characteristics of the symmetrized polytope – The space
(S0, S1, S00, S01, S11) of one and two-body correlators in a given multipartite
game is a subspace of boxes P (a|x) in this same game. Therefore, one can
define the symmetrized local polytope as the convex hull of every one and
two-body correlator constructed from a deterministic strategy (thus, from
deterministic boxes),

PS = Conv({(S0, S1, S00, S01, S11)D}). (2.27)

The cardinality of the set defined in (Eq. 2.26) can be easily seen to be
2(Nm + 1). Thus, the polytope PS have a number of vertices which grows
polynomially with degree m. Linear programming can thus be used on such
polytopes to determine the locality of a given correlation6 for reasonably
small values of N and m.

6Projecting a correlation to the symmetrized space leads to information loss. Hence,
some nonlocal boxes, once projected into the symmetrized space, might be indistinguish-
able from local ones. Only nonlocal correlations originating from permutationally invariant
quantum states and measurements are guarantee to be found nonlocal in PS .
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Chapter 3

Machine Learning for
Nonlocality Detection in
Multipartite System

Machine learning, a subfield of artificial intelligence, represents algorithms
based on statistical models to give computers the ability to learn from and
make predictions on data [27]. In this chapter, after a brief introduction
to the basic concepts of the theory, we report on how we used this learn-
ing paradigm to test nonlocality in the scenario described in the preceding
chapter.

3.1 Neural Networks

(Artificial) Neural networks (NN) are a subclass of machine learning algo-
rithms. They consist of a network of interconnected artificial neurons that
take some inputs and process them to perform a task, e.g. making predic-
tion on new data, generating similar data, compressing data, etc.

In this section, we will focus on NN for binary classification, since our
aim is to determine whether a correlation is local or nonlocal. As an in-
troduction, Perceptron and Adaline, two single-neurone algorithms, will be
presented. We will then introduce Feedforward Neural Networks, a widely
used type of NN for nonlinear classification. Finally, Domain-Adversarial
Neural Network, a NN for classification of data originating from different
domains, will be explained.
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3.1.1 Introduction : Perceptron and Adaline

Perceptron – A perceptron (Fig. 3.1) is a biomimic mathematical model
for linear classification, inspired by signal processing between neural cells
that are assumed to be either active or resting [28]. It is an instance of
supervised learning, a class of machine learning where an algorithm learns
how to process inputs to outputs with examples of input-output pairs. The
perceptron model is used for binary classification – mapping inputs to either
0 or 1 – in the case of linearly separable classes, or labels [29].

Let’s describe the perceptron algorithm [30]. First, the perceptron takes
a vector of inputs x where each element is called a feature. To every feature
a weight is assigned – weights can also be represented as a vector w. These
weights are first initialized randomly. We can now compute the net input z,

z := wTx. (3.1)

Then a decision function Φ(·), or threshold, is applied to the net input. It
is similar to a unit step function,

Φ(z) :=

{
1, if z ≥ θ
0, otherwise

(3.2)

where θ is a fixed bias that shifts the decision boundary from the origin.
The bias can be absorbed in w for convenience (with a corresponding input
xθ being always 1). This function maps the net input to a specific label :
this is the perceptron’s prediction, y′.
Weights can now be updated via the backpropagation of an error. For a
perceptron, this error is defined as the difference between the prediction
and the desired label, y. Thus, with this error, on the ith learning sample
the weight will be updated as

wj = wj + ∆wj (3.3)

with
∆wj = (y(i) − y′(i))x(i)

j , (3.4)

where j is the jth feature, xj its value and wj its weight.
Training a perceptron consists of iterating the above algorithm on a learning
set to in fine converge to the best reachable classification. Indeed, with such
an algorithm, only linearly separable data can be perfectly classified [31].
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Figure 3.1: A schematic representation of a perceptron.

Adaline – An important improvement to the perceptron was the Ada-
line [32] (Adaptative Linear Neurone) algorithm. It is based on the per-
ceptron algorithm with the addition of an activation function between the
net input computation step and the threshold one (Fig. 3.2). This function
can be nonlinear. The key point is that the error is now computed from
the activation function instead of an unit step like function. We denote this
activation function with φ(·).
Consider an Adaline with m inputs. With the use of a cost function, C(·),
from which the error will be computed, we have the following updating rules:

w = w + ∆w (3.5)

where ∆w is the vector of weights change ∆w = (∆w1, . . . ,∆wm). Since
our objective is to optimize the classification accuracy, thus minimizing the
global cost, weight’s changes can be defined as the negative gradient of the
cost function (multiply by a learning rate, η),

∆w = −η∇C(φ(w)), (3.6)

where ∇C is the gradient of C on every weights, or,

∇C = (
∂C

∂w1
, . . . ,

∂C

∂wm
). (3.7)

The use of an activation function allows for better classification of non
trivially separable data and gives the opportunity of using a learning rate1

and of setting a custom cost function.

1Using a learning rate in the perceptron algorithm is similar to a rescaling of weights,
thus it does not qualify as a proper learning rate.
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Figure 3.2: A schematic representation of an Adaline.

3.1.2 Feedforward Neural Network - FNN

Feedforward neural network is a type of neural network, used for classifica-
tion of nonlinearly separable data. It consists in a succession of, at least,
three layers of neurones. Each layer contains a fix number of neurones, and
each neurone receives inputs from all neurones of the preceding layer (Fig.
3.3), explaining this denomination.

The first layer of a neural network is the input layer. The number of
neurones in this first layer is fixed by data dimension. It follows one or more
hidden layers. The more they are, the more accurate classification of highly
non linear data will be, but the heavier in computational resources training
the network will get. Finally, the output layer contains as many neurones
as classes.
Each neurone is similar to an Adaline : it takes inputs and computes the net
input, on which an activation function φ(·) is then applied. A cost function
C(·) is also defined.

We consider a FNN of L layers. A single weight is denote by wljk : the

weight from the kth neurone in the (l − 1)th layer to the jth neurone in the
lth layer.
Training a FNN consists of minimizing the cost, therefore, updating weights
as in (Eq. 3.6). Thus, we need to compute the gradient of the cost for every
weight ∂C

∂wl
jk

. This is done using the backpropagation algorithm [33]. A

formulation of this algorithm is as follows [34]:

1. Input: x set the activation of the first layer, a1.

2. Feedforward: Compute net inputs and activations for each l ∈ {2, . . . , L}:
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Figure 3.3: A schematic representation of a feedforward neural network with
one hidden layer.

zl = (wl)Tal−1 and al = φ(zl)

3. Output error: Compute

δL = ∇aLC � φ′(zL). (3.8)

where, � is the Hadamard product and φ′ is the derivative of φ.

4. Backpropagate the error: For l ∈ {L − 1, L − 2, . . . , 2}, compute
the error using the recurrence rule,

δl = ((wl+1)Tδl+1 � φ′(zl). (3.9)

5. Return: the gradient of the cost, with each element define as,

∂C

∂wljk
= al−1

k δlj . (3.10)

This algorithm can be speed up by a stochastic gradient descent (SGD)
algorithm (for more details see [35]).
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3.1.3 Domain Adversarial Neural Network - DANN

Domain adaptation is the subfield of machine learning that focus on algo-
rithms for learning, from a source data distribution, a model that can be
extend to a target data distribution [36]. Domain adaptation of neural net-
work is a fast-expending field.

Domain Adversarial Neural Network [16] (DANN) is a neural network
for domain adaptation using adversarial learning. It consists of three FNN,
referred to as feature extractor (FE), domain classifier (DC), and label pre-
dictor (yP) (Fig. 3.4). The aim is to extract a new feature space via the
feature extractor allowing a good label classification while being domain-
invariant.

DANN algorithm can be seen as:

1. Input : One sample of a dataset containing n samples. Each sample
is Si = (xi, yi, di), ∀i ∈ {1, . . . , n}, where xi is an input vector, yi the
desired label, and di the domain this sample originate from.

2. Feedforward 1: Compute activation of every neurones of the FE, up
to the last layer. Outputs of the last layer are new features, elements
of the extracted feature space. Those new features are inputs of the
DC and yP.

3. Feedforward 2: Compute activation of DC and yP neurones.

4. Output error: Compute error of the DC, δDC , and of the yP, δyP ,
using (Eq. 3.8).

5. Backpropagation 1: Backpropagate δDC (δyP ) using (Eq. ??) through
DC (yP).

6. Backpropagation 2: Backpropagate δyP through FE as if it is a
single FNN. Thus, the extracted features are updated such that yP
performs better at each step.
Backpropagate −λδDC through FE, where −λ is a cost weight. Error
reversal ensures that the extracted featured distribution over domains
are made similar. In other words, extracted features are updated such
that it is harder for DC to classify domains.
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Figure 3.4: A schematic representation of a DANN.

3.2 Generating Data : Local and Nonlocal Corre-
lations

For our supervised learning approach, examples of input-output pairs (in our
setting, boxes labelled as local or nonlocal) are mandatory. In this section
we explain the strategies we followed to generate them.

3.2.1 Local Correlations: Uniform Sampling of a Convex
Polytope

By virtue of its geometric structure, the problem of generating uniform sam-
ples from the set of local correlations reduces to the problem of generating
uniform samples from a convex polytope. This last problem has been vastly
studied in the past 25 years (see, e.g., [37] for a review) and the state-of-
the-art strategies to solve it are the Hit-and-Run algorithm of Kannan [38]
and the more standard method of Rejection Sampling. In this section we
describe these techniques and explain how we applied them to our setting.

Hit-and-Run algorithm – This sampling algorithm is an instance of
the class of Markov Chain Monte Carlo (MCMC) [38] algorithms. MCMC
methods usually start with a random point in the target space and then
“walk” to a next point according to some rule. The Markovianity comes
from the fact that each next step depends only on the current location and
not on the steps taken previously; it is Monte Carlo because this choice is
made pseudorandomly.
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The Hit-and-Run algorithm (Alg. 1) was introduced by Vempala
in [37]2. Asymptotically in the number of iterations, it provably gener-
ates uniform samples of a given convex polytope. However, the convergence
rate of the Hit-and-Run algorithm gets slower with increasing dimension of
the polytope. Convergence of MCMC methods is usually evaluated by how
much overlap (or, mixing) there is between different (independent) walks
(or, chains). To achieve good mixing, we must let the individual chains run
for sufficiently long times (i.e. sample more points).

Algorithm 1: Hit-and-Run algorithm

Result: A list of N points uniformly distributed in a polytope.
n, the number of generated point, set to 0;

xn a starting point in a polytope P ∈ Rk;
while n < N do

Take a random direction d in the sphere Sk;
Find the chord C through xn in direction d and −d;
Using LP, find c1,c2, the two intersections of C and P edges;
Parametrize the chord as C = c1 + λ(c2 − c1), ∀λ ∈ [0; 1];
Pick a random point xn+1 on C by taking λ ∈ U [0; 1];
Increment n by 1;

end

Hit-and-Run sampling of PS – A sampling of a symmetrized polytope
PS with the Hit-and-Run algorithm can be seen in (Fig. 3.5). We observed
clusters of points in some extreme regions of the polytope (red circle in Fig.
3.5). This might be due to the ”sharpness” of some of the symmetrized
polytope angles, where the chain gets stuck. Furthermore, even with ten
thousand points we do not reach a uniform distribution (e.g. the quantity
S00 in Fig. 3.5).

Rejection sampling – Another method for convex polytope sampling is
to use a rejection sampling algorithm (Alg. 2), a Monte Carlo algorithm3. It
consists of, given a polytope P, uniformly generating a point in the smallest
hypercube enclosing P and keeping it or rejecting it based on its membership
to P.

2We provide an implementation of this algorithm in python, see https://plut0n.

gitlab.io/MLNL/_modules/nonloc_tb.html#hit_n_run.
3An implementation in python of this algorithm can be found at https://plut0n.

gitlab.io/MLNL/_modules/nonloc_tb.html#rejection.
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Figure 3.5: Ten thousand points sample, via Hit-and-Run algorithm, from
a symmetrized polytope drawn for 7 parties, 2 inputs and 2 outputs. Here
are two dimensional projections in each pair of vectors of (Eq. 2.17). On
the diagonal is the kernel density estimate (KDE), an approximation of the
probability density function of a random variable. Red circles correspond to
clusters of points, where the chain gets stuck for a certain number of steps.
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Algorithm 2: Rejection sampling algorithm

Result: A list of N points uniformly distributed in a polytope.
n, the number of generated points, set to 0;
P, the polytope we want to sample;
while n < N do

for j < dim(P) do
Let a := min{p(j)|p ∈ P} and b := max{p(j)|p ∈ P};
Generate uniformly xn, with jth element x

(j)
n = U [a; b];

end
Using LP check whether xn is in P ;
if xn ∈ P then

Increment n by 1;
end

end

Rejection sampling of PS – To compute an hypercube enclosing PS ,
we need extreme values of its vertices in each direction. Using (Eq. 2.24)
and (Eq. 2.25), for N parties, we have

Sk ∈ [−N ;N ], Skk ∈ [N ;N(N − 1)], Skl ∈ [−N(N − 1);N(N − 1)]. (3.11)

A sample of PS using rejection sampling in the space defined above can be
seen in (Fig. 3.6).

Compared to the Hit-and-Run algorithm, rejection sampling exhibits
a larger running time over the same polytope PS . This is explained by the
number of LP instances that need to be solved. Hit-and-Run needs a fix
number of two LP per generated point, whereas for the rejection sampling
this depends on the measure of the polytope inside the enclosing hypercube.
On the other hand, the distribution we get with rejection sampling is closer
to the uniform one. Since we wanted our machine learning algorithm to be
as accurate as possible, we decided to favour this last sampling method for
generating local correlations.

3.2.2 Nonlocal Correlations

For the problem of generating nonlocal correlations, we considered two
strategies: 1) generating random instances of a class of quantum correla-
tions which we know not to belong to P by the work of Tura et al. [15]
and 2) doing rejection sampling for the complement (inside the space of
probabilities) of P.
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Figure 3.6: Ten thousands points sampled, via rejection sampling algorithm,
from a symmetrized polytope drawn for 7 parties, 2 inputs and 2 outputs.
Here are two dimensional projections in each pair of vectors of (Eq. 2.17).
On the diagonal is the kernel density estimate (KDE).

Quantum correlations – For a two-inputs, two-outputs scenario, gen-
erating nonlocal correlations in the symmetrized space can be done using
N -qubit Dicke states [39] with k = dN2 e excitations,

|DN
k 〉 =

1√(
N
k

)∑
j

Permj{|1〉⊗k ⊗ |0〉⊗(N−k)}, (3.12)

where
∑

j Permj{·} is the sum over all possible permutations, and with
measurements,

M0 = σz, M1 = cos(θ)σz + sin(θ)σx. (3.13)

This setup violates a Bell inequality composed only by single and two-order
body correlators [15], for some specific angle θ.
Using this setup, we were able to generate non local correlations as one can
see in (Fig. 3.2.2).

Nonlocal correlations from rejection sampling – Another method
to obtain nonlocal correlations is to use rejection sampling as described

Chapter 3 25



Machine Learning for Nonlocality Detection in Multipartite System

Figure 3.7: Local (purple) and nonlocal (orange) correlations for a 7 parties,
2 inputs and 2 outputs scenario. Local correlations consists of ten thousand
points originating from a rejection sampling method. Nonlocal correlations
are generating from Dicke states |DN

dN
2
e〉 and using measurements describe

above with a random angle θ ∈ U [0;π]. Here are one thousand nonlocal
correlations.
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in the previous sections. Instead of conserving a point that is found to
belong to the polytope, a point is conserved when the LP indicates that
it is outside this polytope4. Since we want points fully wrapping PS , thus
avoiding common points between the sampling space and PS boundaries, we
shift boundaries of one and two body correlators defined in (Eq. 3.11) by −ε
for upper bounds and +ε for lower bounds. Notice that in this way we might
get distributions which are not even non-signalling, let alone quantum. The
main advantage of such a sampling is to obtain a well define boundary of
PS .

3.3 Results

Our aim is to provide a computationally efficient way to certify the presence
of nonlocality in multipartite systems. As explained before, efficiency will
come at the cost of having non-perfect accuracy. Since our aim is to certify
the presence of nonlocality, we will strive to have as little false positives
as possible, that is, local correlations misclassified as nonlocal, while trying
to achieve a fairly good accuracy on the classification of nonlocal points.
Next, we describe the experimental setup and the results obtained with our
methods.

3.3.1 Final Setup

Datasets of correlations – For both local and nonlocal correlations, we
generated ten thousand correlations using rejection sampling of the sym-
metrized polytope PS , for a 2-inputs, 2-outputs scenario, and for different
number of parties N ∈ {3, 4, 5, . . . , 20, 25, 30, 40, 50, 75, 100}5. Every corre-
lation is labelled with y ∈ {0, 1}, where 0 means local, 1 nonlocal and with d,
the number of parties a correlation originate from. Thus, we have a dataset
of the form D = {(xi, yi, di)}.

Since the value of the correlators Sx and Sxy increases with N and our
aim was to have a classification method which is (as much as possible)
independent of N , we decided to test what happened if we trained (and
tested) our classifiers with unnormalized data; that is, we did experiments

4In (Alg. 2), we replace the argument of the if condition, x ∈ P, by x /∈ P.
5Our data and a custom dataset loader for pytorch we implemented are available at

https://gitlab.com/plut0n/MLNL/tree/master/data and https://plut0n.gitlab.io/

MLNL/_modules/data.html#Data_N_File respectively.
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with another dataset D′ = {(x′i, yi, di)} with

x′
(j)
i = 2

x
(j)
i −min((PS)(j))

max((PS)(j))−min((PS)(j))
− 1 (3.14)

and min((PS)(j)) (resp. max((PS)(j))) being the minimum (resp. maximum)
value a local correlation can take in the basis j, defined in (Eq. 3.11).

FNN – We designed a FNN with three layers of a fixed number of
neurones: 5 neurons in the first layer, 10 in the second and 2 in the third.
Activation function of the hidden layer is the rectified linear unit, or ReLU

ReLU(z) = max(0, z). (3.15)

Using ReLU for this layer is motivated by the stability of the gradient when
computed from this activation function 6.
Activation function of the output layer is a normalized exponential function,
or Softmax [40]

Softmax(zi) =
ezi∑K
k=1 e

zk
, (3.16)

where zi is the net input of the jth neurone, and K is the number of class,
thus, the number of neurones in the output layer.
The loss function we used is the negative log likelihood loss, or NLLLoss.
Therefore, the cost is defined by,

C = −
∑
i

ti log(ai) (3.17)

where ti is the cost weight for the class i, and ai the activation of the ith

neurone (of the last layer). Similarly, one can set the activation function to
be linear, and unify Softmax and NLLLoss in a single cost function. This
new cost function is the so-called cross-entropy [41]. Conceptually, this loss
can be seen as the difference between the distribution of neurones activation,
and the “one-shot” distribution of the desired label, a vector of all 0s except
a 1 at the neurone corresponding to the desired class.
We use cost weights of 10 for the local class and 1 for the nonlocal class.
Those imbalanced weights are equivalent to using imbalanced data : 10 times
more local correlations than nonlocal correlations in the dataset. Hence,

6Gradient descent might encounter vanishing or exploding problem when computed
from other activation such as softmax, or sigmöıd [34].
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weights of the neural network will be updated such that the accuracy on
local correlations is maximized.

DANN – We implemented a DANN with the following architecture:

• Feature extractor is of three layers with number of neurones per layer
being: 5 for the first and second and 3 for the third. Activation
function on layer but the input one is ReLU (Eq. 3.15).

• Label predictor has the same architecture than the above FNN, except
the input layer that consists of 3 neurones.

• Domain classifier is of three layers with number of neurones per layer
being: 3 for the first, 4 for the second and Nend −Nstart for the third,
with Nstart (resp. Nend) being the minimum (resp. maximum) num-
ber of parties the DANN was trained on, assuming that the DANN is
trained on every number of parties between Nstart and Nend. Activa-
tion and cost functions are the same as in the above FNN.

3.3.2 FNN Results

Results on unnormalized data – Performance of a FNN trained on cor-
relations originating from 3 to 6-partites systems and run for 200 epochs7

can be seen in Fig. 3.8. Effect of imbalanced cost weights is clearly visible
with a higher local than nonlocal accuracy.
Accuracy of the FNN decreases when we increase the number of parties in
the training data. This was expected, as the number of vertices of PS grows
with N . However, we also observe that the classification accuracy converges
for high N . With the assumption that PS have really sharp angles, this be-
haviour might partially be due to a decreasing number of sample points into
PSN+1 \ PSN , inversely of N. Indeed, with a fixed number of sampled points,
using rejection sampling, the higher N is, the sparser points into sharp area
of the symmetrized polytope should get. We also need to take into account
imbalanced cost weights which may also participate into the explanation of
such behaviour: with an higher cost weight for local correlations, FNN will
have a tendency to classify correlations, especially when then they lie in a
space the networks wasn’t trained on, as local.

Results on normalized data – As we expected, normalizing the data
helped the FNN to achieve (markedly) better results (see Fig 3.9), because,

7An epoch is an iteration over a dataset.
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Figure 3.8: FNN accuracy for local (blue) and nonlocal (orange) cor-
relations. Overall accuracy of the network is represented by the green
line. Trained for correlations from 3 to 6-partite system. FNN tested on
N ∈ {3, 4, 5, . . . , 20, 25, 30, 40, 50, 75, 100}.

in a way, normalizing implies blurring the dependence of the data with the
number of parties. Indeed, when plotting 2D-projection of the space of sym-
metrized correlators in every pair of basis in (Eq. 2.17) and for different N ,
it appears that already for N ≈ 10 the shape of the polytopes converge to its
final form. Therefore, we decided to test what happened if we run the linear
program for testing membership to the symmetrized polytope of 1 ≤ N ≤ 9
parties with data from the spaces of N = 3, . . . , 100 parties. As expected,
this gives a good classification scheme with an accuracy of more than 0.87
for every tested case (see Fig. 3.10).

3.3.3 DANN Results

We trained the DANN on correlations generated from systems with 3 to 6
parties, with 150 epochs and a learning rate of 10−4 8. The DANN’s accu-
racy on N ∈ {3, 4, 5, . . . , 20, 25, 30, 40, 50, 75, 100} can be seen in Fig. 3.11.

8We provide a pre-trained model for DANN at https://gitlab.com/plut0n/MLNL/

blob/master/src/dann.pkl. This model can be load with the load function of the class
NL DANN.
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Figure 3.9: Accuracy of FNN trained on normalized correlations from N ∈
{3, 4, 5, 6}, with 200 epochs, and a learning rate of 10−3.

Figure 3.10: Accuracy of a LP, running from a normalized polytope PSN , to
classify normalized local and nonlocal correlations originating from a N ′-
partites system.
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Figure 3.11: DANN accuracy for local and nonlocal correlations. Trained
on correlations originating from systems with 3 to 6 parties. Tested on
N ∈ {3, 4, 5, . . . , 21, 25, 30, 40, 50, 75, 100}.

Testing time for a given correlation is almost instantaneous – in the order
of 10µs.
Using the domain adversarial method resulted in a more stable accuracy
than what we achieved with the FNN for both local and nonlocal classifica-
tion. With the DANN architecture detailed above, we were able to achieve
an accuracy of more than 0.9785 for local correlations. Furthermore, our
DANN provides a good hint on nonlocality detection with an accuracy higher
than 0.6 for N > 6.
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Chapter 4

Conclusions and Future
Work

Conclusions – In this thesis we provided a machine-learing scheme for cer-
tifying nonlocality of multipartite correlations, using neural networks and
body correlators. In the spirit of Machine Learning, our detection method is
computationally efficient at the cost of being not perfectly accurate. How-
ever, the results obtained show that testing with a small dataset, the clas-
sification accuracy is already fairly high. Indeed, false positives (local cor-
relations classified as nonlocal) happen less than 2.15% of the time, and
nonlocality is detected in more than 60% of the cases for a all number of
parties higher than 6. What is more, we leveraged the recently introduced
Domain Adversarial Neural Networks to provide a testing algorithm which
is blind (or, independent) to the number of parties composing the system.

While we were working on this project, a method to test nonlocality using
machine-learning was published [42]; however, the aim there is quite different
from ours. On the one hand, although very high accuracy is reported in the
classification experiments done in [42], the training and testing scenarios
coincide, that is, same number of parties, inputs and outputs. What is more,
these are of a fairly low complexity and so, for example, for the standard
CHSH scenario, running the linear program is already efficient (and perfectly
accurate). We aimed at designing a tool which can be trained for feasible
number of parties and used for sizes of multipartite systems for which no
feasible and perfectly accurate method is known.

Future Work – While the results presented suggest that the Domain
Adversarial approach allows for a better classification accuracy, fairly com-
paring the FNN and the DANN approach will imply maximizing both neu-
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ral networks performances, especially for local classification, and this will
hence require the optimisation of their architectures and parameters. An
approach to this technological challenge is to use a modified neuroevolution
algorithm1, with the objective of maximizing local accuracy, stability of this
accuracy, and overall accuracy.
Accuracy of the DANNs might also increase by a blending of an ensemble
of FNN for the label classification (as it was done in [42]).
Finally, we would also like to explore the capabilities of the DANNs regard-
ing the developing of classifications schemes independent of the number of
measurements (possibly for a fixed number of parties).

1The code structure of DANN and FNN, we provide, allows the use of such and al-
gorithm, thanks to a dynamic structure: number of layers, neurones per layer, and other
parameters are arguments taken during the initialization of the neural network.

Chapter 4 34



Bibliography

[1] A. Einstein, B. Podolsky, and N. Rosen. “Can Quantum-Mechanical
Description of Physical Reality Be Considered Complete?” In: Physical
Review 47.10 (1935), pp. 777–780. doi: 10.1103/physrev.47.777.
url: https://doi.org/10.1103/physrev.47.777.

[2] J. S. Bell. “On the Einstein Podolsky Rosen paradox”. In: Physics
Physique 1.3 (1964), pp. 195–200. doi: 10.1103/physicsphysiquefizika.
1.195. url: https://doi.org/10.1103/physicsphysiquefizika.
1.195.

[3] Nicolas Brunner et al. “Bell nonlocality”. In: Reviews of Modern Physics
86.2 (2014), pp. 419–478. doi: 10.1103/revmodphys.86.419. url:
https://doi.org/10.1103/revmodphys.86.419.

[4] Stefano Pironio et al. “Device-independent quantum key distribution
secure against collective attacks”. In: New Journal of Physics 11.4
(2009), p. 045021. doi: 10.1088/1367- 2630/11/4/045021. url:
https://doi.org/10.1088/1367-2630/11/4/045021.

[5] Sophie Laplante et al. “Robust Bell inequalities from communication
complexity”. In: Quantum 2 (2018), p. 72.

[6] Miguel Herrero-Collantes and Juan Carlos Garcia-Escartin. “Quan-
tum random number generators”. In: Reviews of Modern Physics 89.1
(2017). doi: 10.1103/revmodphys.89.015004. url: https://doi.
org/10.1103/revmodphys.89.015004.

[7] Manabendra Nath Bera et al. “Randomness in quantum mechanics:
philosophy, physics and technology”. In: Reports on Progress in Physics
80.12 (2017), p. 124001. doi: 10.1088/1361- 6633/aa8731. url:
https://doi.org/10.1088/1361-6633/aa8731.

35

https://doi.org/10.1103/physrev.47.777
https://doi.org/10.1103/physrev.47.777
https://doi.org/10.1103/physicsphysiquefizika.1.195
https://doi.org/10.1103/physicsphysiquefizika.1.195
https://doi.org/10.1103/physicsphysiquefizika.1.195
https://doi.org/10.1103/physicsphysiquefizika.1.195
https://doi.org/10.1103/revmodphys.86.419
https://doi.org/10.1103/revmodphys.86.419
https://doi.org/10.1088/1367-2630/11/4/045021
https://doi.org/10.1088/1367-2630/11/4/045021
https://doi.org/10.1103/revmodphys.89.015004
https://doi.org/10.1103/revmodphys.89.015004
https://doi.org/10.1103/revmodphys.89.015004
https://doi.org/10.1088/1361-6633/aa8731
https://doi.org/10.1088/1361-6633/aa8731


[8] A. Shenoy-Hejamadi, A. Pathak, and S. Radhakrishna. “Quantum
Cryptography: Key Distribution and Beyond”. In: Quanta 6.1 (2017),
p. 1. doi: 10.12743/quanta.v6i1.57. url: https://doi.org/10.
12743/quanta.v6i1.57.

[9] Itamar Pitowsky. “Correlation polytopes: Their geometry and com-
plexity”. In: Mathematical Programming 50.1-3 (1991), pp. 395–414.
doi: 10 . 1007 / bf01594946. url: https : / / doi . org / 10 . 1007 /

bf01594946.

[10] L. Babai, L. Fortnow, and C. Lund. “Non-deterministic exponential
time has two-prover interactive protocols”. In: Computational Com-
plexity 1.1 (1991), pp. 3–40. doi: 10.1007/bf01200056. url: https:
//doi.org/10.1007/bf01200056.

[11] Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell. Ma-
chine Learning. Springer Berlin Heidelberg, 1983. url: https://doi.
org/10.1007/978-3-662-12405-5.

[12] Giuseppe Carleo and Matthias Troyer. “Solving the quantum many-
body problem with artificial neural networks”. In: Science 355.6325
(2017), pp. 602–606.

[13] Juan Carrasquilla and Roger G. Melko. “Machine learning phases of
matter”. In: Nature Physics 13.5 (2017), pp. 431–434. doi: 10.1038/
nphys4035. url: https://doi.org/10.1038/nphys4035.

[14] Hiroki Saito and Masaya Kato. “Machine Learning Technique to Find
Quantum Many-Body Ground States of Bosons on a Lattice”. In:
Journal of the Physical Society of Japan 87.1 (2018), p. 014001. doi:
10.7566/jpsj.87.014001. url: https://doi.org/10.7566/jpsj.
87.014001.

[15] J. Tura et al. “Nonlocality in many-body quantum systems detected
with two-body correlators”. In: Annals of Physics 362 (2015), pp. 370–
423. doi: 10.1016/j.aop.2015.07.021. url: https://doi.org/10.
1016/j.aop.2015.07.021.

[16] Yaroslav Ganin et al. “Domain-Adversarial Training of Neural Net-
works”. In: Journal of Machine Learning Research 17.59 (2016), pp. 1–
35. url: http://jmlr.org/papers/v17/15-239.html.

[17] Sandu Popescu and Daniel Rohrlich. “Quantum nonlocality as an ax-
iom”. In: Foundations of Physics 24.3 (1994), pp. 379–385. doi: 10.
1007/bf02058098. url: https://doi.org/10.1007/bf02058098.

36

https://doi.org/10.12743/quanta.v6i1.57
https://doi.org/10.12743/quanta.v6i1.57
https://doi.org/10.12743/quanta.v6i1.57
https://doi.org/10.1007/bf01594946
https://doi.org/10.1007/bf01594946
https://doi.org/10.1007/bf01594946
https://doi.org/10.1007/bf01200056
https://doi.org/10.1007/bf01200056
https://doi.org/10.1007/bf01200056
https://doi.org/10.1007/978-3-662-12405-5
https://doi.org/10.1007/978-3-662-12405-5
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4035
https://doi.org/10.7566/jpsj.87.014001
https://doi.org/10.7566/jpsj.87.014001
https://doi.org/10.7566/jpsj.87.014001
https://doi.org/10.1016/j.aop.2015.07.021
https://doi.org/10.1016/j.aop.2015.07.021
https://doi.org/10.1016/j.aop.2015.07.021
http://jmlr.org/papers/v17/15-239.html
https://doi.org/10.1007/bf02058098
https://doi.org/10.1007/bf02058098
https://doi.org/10.1007/bf02058098


[18] Stefano Pironio. “Aspects of Quantum Non-Locality”. PhD thesis.
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[42] Askery Canabarro, Samuráı Brito, and Rafael Chaves. Machine learn-
ing non-local correlations. 2018. eprint: arXiv:1808.07069.

39

https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1007/s10479-005-5724-z
arXiv:1808.07069

	Introduction
	Preliminaries – Locality and Convex Geometry
	Characterizing Locality via a Bell Game
	Local Polytope
	Locality in Multipartite System
	Symmetrized Local Polytope
	Symmetrized Space
	Symmetrized Polytope


	Machine Learning for Nonlocality Detection in Multipartite System
	Neural Networks
	Introduction : Perceptron and Adaline
	Feedforward Neural Network - FNN
	Domain Adversarial Neural Network - DANN

	Generating Data : Local and Nonlocal Correlations
	Local Correlations: Uniform Sampling of a Convex Polytope
	Nonlocal Correlations

	Results
	Final Setup
	FNN Results
	DANN Results


	Conclusions and Future Work

